Advanced Documentation Topics
Explore sophisticated techniques and strategies to take your Documentation as Code implementation to the next level.
Overview
This section covers advanced topics for organizations looking to maximize the value of their documentation infrastructure through cutting-edge techniques and optimizations.
Advanced Architecture Patterns
Microservices Documentation Architecture
Implement distributed documentation for microservices:
# docs-architecture.yml
services:
api-gateway-docs:
build: ./docs/api-gateway
environment:
- SERVICE_NAME=api-gateway
- DOCS_PORT=3001
user-service-docs:
build: ./docs/user-service
environment:
- SERVICE_NAME=user-service
- DOCS_PORT=3002
aggregator:
build: ./docs/aggregator
ports:
- "8080:8080"
depends_on:
- api-gateway-docs
- user-service-docs
Documentation Federation
// docs-federation.js
const express = require('express');
const { createProxyMiddleware } = require('http-proxy-middleware');
const app = express();
// Route to different documentation services
const services = [
{ path: '/api-gateway', target: 'http://api-gateway-docs:3001' },
{ path: '/user-service', target: 'http://user-service-docs:3002' },
{ path: '/payment-service', target: 'http://payment-service-docs:3003' }
];
services.forEach(service => {
app.use(service.path, createProxyMiddleware({
target: service.target,
changeOrigin: true,
pathRewrite: { [`^${service.path}`]: '' }
}));
});
app.listen(8080, () => {
console.log('Documentation federation running on port 8080');
});
Advanced Content Management
Dynamic Content Generation
# dynamic-content-generator.py
import yaml
import json
from jinja2 import Template
from pathlib import Path
class DynamicContentGenerator:
def __init__(self, config_path):
with open(config_path, 'r') as f:
self.config = yaml.safe_load(f)
def generate_api_docs(self, openapi_spec_path):
"""Generate API documentation from OpenAPI spec"""
with open(openapi_spec_path, 'r') as f:
spec = yaml.safe_load(f)
template = Template("""
---
title: "{{ info.title }} API Reference"
description: "{{ info.description }}"
tags: ["api", "reference"]
---
## {{ info.title }} API
{{ info.description }}
**Version:** {{ info.version }}
**Base URL:** {{ servers[0].url }}
## Endpoints
{% for path, methods in paths.items() %}
### {{ path }}
{% for method, details in methods.items() %}
#### {{ method.upper() }} {{ path }}
{{ details.summary }}
{% if details.parameters %}
**Parameters:**
| Name | Type | Required | Description |
|------|------|----------|-------------|
{% for param in details.parameters %}
| {{ param.name }} | {{ param.schema.type }} | {{ param.required }} | {{ param.description }} |
{% endfor %}
{% endif %}
{% endfor %}
{% endfor %}
""")
return template.render(**spec)
def generate_changelog(self, git_log):
"""Generate changelog from git history"""
template = Template("""
---
title: "Changelog"
description: "Release notes and version history"
---
## Changelog
{% for version in versions %}
### {{ version.tag }} - {{ version.date }}
{% for commit in version.commits %}
- {{ commit.message }} ({{ commit.author }})
{% endfor %}
{% endfor %}
""")
return template.render(versions=git_log)
# Usage
generator = DynamicContentGenerator('config.yml')
api_docs = generator.generate_api_docs('openapi.yml')
Path('docs/api/reference.md').write_text(api_docs)
Content Localization
# i18n-config.yml
languages:
- code: en
name: English
default: true
output_dir: _site/en
- code: es
name: Español
output_dir: _site/es
- code: fr
name: Français
output_dir: _site/fr
localization:
content_dirs:
- docs/
- templates/
translation_memory:
provider: azure_translator
api_key: "${TRANSLATOR_API_KEY}"
automated_translation:
enabled: true
review_required: true
quality_threshold: 0.9
Advanced Search Implementation
Elasticsearch Integration
// advanced-search.ts
import { Client } from '@elastic/elasticsearch';
interface SearchResult {
title: string;
content: string;
url: string;
score: number;
highlights: string[];
}
class AdvancedSearch {
private client: Client;
constructor(node: string) {
this.client = new Client({ node });
}
async indexContent(content: any[]) {
const operations = content.flatMap(doc => [
{ index: { _index: 'documentation', _id: doc.id } },
{
title: doc.title,
content: doc.content,
url: doc.url,
tags: doc.tags,
category: doc.category,
last_updated: doc.lastUpdated
}
]);
await this.client.bulk({ operations });
}
async search(query: string, filters: any = {}): Promise<SearchResult[]> {
const searchParams = {
index: 'documentation',
body: {
query: {
bool: {
must: [
{
multi_match: {
query,
fields: ['title^2', 'content', 'tags'],
fuzziness: 'AUTO'
}
}
],
filter: this.buildFilters(filters)
}
},
highlight: {
fields: {
content: {
fragment_size: 150,
number_of_fragments: 3
}
}
},
size: 20
}
};
const response = await this.client.search(searchParams);
return this.formatResults(response.body.hits.hits);
}
private buildFilters(filters: any) {
const result = [];
if (filters.category) {
result.push({ term: { category: filters.category } });
}
if (filters.tags) {
result.push({ terms: { tags: filters.tags } });
}
if (filters.dateRange) {
result.push({
range: {
last_updated: {
gte: filters.dateRange.from,
lte: filters.dateRange.to
}
}
});
}
return result;
}
private formatResults(hits: any[]): SearchResult[] {
return hits.map(hit => ({
title: hit._source.title,
content: hit._source.content,
url: hit._source.url,
score: hit._score,
highlights: hit.highlight?.content || []
}));
}
}
AI-Powered Search
# ai-search-enhancement.py
import openai
from sentence_transformers import SentenceTransformer
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
class AISearchEnhancement:
def __init__(self, openai_api_key):
openai.api_key = openai_api_key
self.model = SentenceTransformer('all-MiniLM-L6-v2')
self.document_embeddings = {}
def create_embeddings(self, documents):
"""Create embeddings for all documents"""
for doc_id, content in documents.items():
embedding = self.model.encode([content['text']])[0]
self.document_embeddings[doc_id] = {
'embedding': embedding,
'metadata': content['metadata']
}
def semantic_search(self, query, top_k=10):
"""Perform semantic search using embeddings"""
query_embedding = self.model.encode([query])[0]
similarities = []
for doc_id, doc_data in self.document_embeddings.items():
similarity = cosine_similarity(
[query_embedding],
[doc_data['embedding']]
)[0][0]
similarities.append({
'doc_id': doc_id,
'similarity': similarity,
'metadata': doc_data['metadata']
})
return sorted(similarities, key=lambda x: x['similarity'], reverse=True)[:top_k]
def generate_answer(self, query, context_docs):
"""Generate AI-powered answer from context"""
context = "\n\n".join([doc['content'] for doc in context_docs])
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{
"role": "system",
"content": "You are a helpful documentation assistant. Answer questions based on the provided context."
},
{
"role": "user",
"content": f"Context: {context}\n\nQuestion: {query}"
}
],
max_tokens=500,
temperature=0.3
)
return response.choices[0].message.content
def smart_query_expansion(self, query):
"""Expand user queries with related terms"""
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{
"role": "system",
"content": "Expand the following search query with related technical terms and synonyms. Return only the expanded query."
},
{
"role": "user",
"content": query
}
],
max_tokens=100,
temperature=0.5
)
return response.choices[0].message.content.strip()
Advanced Analytics and Insights
Machine Learning Content Analysis
# content-analytics.py
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.decomposition import LatentDirichletAllocation
import matplotlib.pyplot as plt
import seaborn as sns
class ContentAnalytics:
def __init__(self):
self.vectorizer = TfidfVectorizer(
max_features=1000,
stop_words='english',
ngram_range=(1, 2)
)
def analyze_content_gaps(self, documents, search_queries):
"""Identify content gaps using ML analysis"""
# Vectorize existing content
doc_vectors = self.vectorizer.fit_transform([doc['content'] for doc in documents])
# Vectorize search queries
query_vectors = self.vectorizer.transform([q['query'] for q in search_queries])
# Find queries with low similarity to existing content
similarities = cosine_similarity(query_vectors, doc_vectors)
max_similarities = similarities.max(axis=1)
gaps = []
for i, max_sim in enumerate(max_similarities):
if max_sim < 0.3: # Low similarity threshold
gaps.append({
'query': search_queries[i]['query'],
'frequency': search_queries[i]['frequency'],
'similarity': max_sim,
'suggested_priority': self.calculate_priority(
search_queries[i]['frequency'],
max_sim
)
})
return sorted(gaps, key=lambda x: x['suggested_priority'], reverse=True)
def topic_modeling(self, documents, n_topics=10):
"""Perform topic modeling on documentation"""
doc_vectors = self.vectorizer.fit_transform([doc['content'] for doc in documents])
lda = LatentDirichletAllocation(
n_components=n_topics,
random_state=42,
max_iter=100
)
lda_output = lda.fit_transform(doc_vectors)
# Extract topics
feature_names = self.vectorizer.get_feature_names_out()
topics = []
for topic_idx, topic in enumerate(lda.components_):
top_words = [feature_names[i] for i in topic.argsort()[-10:]]
topics.append({
'topic_id': topic_idx,
'words': top_words,
'documents': [i for i, doc_topics in enumerate(lda_output)
if doc_topics[topic_idx] > 0.3]
})
return topics
def content_clustering(self, documents):
"""Cluster similar content for organization insights"""
doc_vectors = self.vectorizer.fit_transform([doc['content'] for doc in documents])
# Determine optimal number of clusters
inertias = []
k_range = range(2, 15)
for k in k_range:
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(doc_vectors)
inertias.append(kmeans.inertia_)
# Use elbow method to find optimal k
optimal_k = self.find_elbow(k_range, inertias)
# Perform final clustering
kmeans = KMeans(n_clusters=optimal_k, random_state=42)
clusters = kmeans.fit_predict(doc_vectors)
# Analyze clusters
cluster_analysis = []
for cluster_id in range(optimal_k):
cluster_docs = [documents[i] for i, c in enumerate(clusters) if c == cluster_id]
cluster_analysis.append({
'cluster_id': cluster_id,
'size': len(cluster_docs),
'documents': cluster_docs,
'characteristics': self.analyze_cluster_characteristics(cluster_docs)
})
return cluster_analysis
def calculate_priority(self, frequency, similarity):
"""Calculate content priority score"""
# High frequency + low similarity = high priority
return frequency * (1 - similarity)
def find_elbow(self, k_range, inertias):
"""Find elbow point for optimal k"""
# Simple elbow detection - can be improved with more sophisticated methods
diffs = [inertias[i-1] - inertias[i] for i in range(1, len(inertias))]
return k_range[diffs.index(max(diffs)) + 1]
def analyze_cluster_characteristics(self, cluster_docs):
"""Analyze characteristics of a document cluster"""
# Extract common patterns
all_text = ' '.join([doc['content'] for doc in cluster_docs])
# Simple keyword extraction
words = all_text.lower().split()
word_freq = pd.Series(words).value_counts().head(10)
return {
'top_keywords': word_freq.to_dict(),
'avg_length': sum(len(doc['content']) for doc in cluster_docs) / len(cluster_docs),
'categories': list(set(doc.get('category', 'unknown') for doc in cluster_docs))
}
Advanced Deployment Strategies
Blue-Green Deployment
# blue-green-deployment.yml
apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
name: docs-site-rollout
spec:
replicas: 3
strategy:
blueGreen:
activeService: docs-site-active
previewService: docs-site-preview
autoPromotionEnabled: false
scaleDownDelayDuration: 30s
steps:
- setWeight: 20
- pause: {}
- setWeight: 40
- pause: {duration: 10s}
- setWeight: 60
- pause: {duration: 10s}
- setWeight: 80
- pause: {duration: 10s}
selector:
matchLabels:
app: docs-site
template:
metadata:
labels:
app: docs-site
spec:
containers:
- name: docs-site
image: docs-site:${IMAGE_TAG}
ports:
- containerPort: 80
env:
- name: ENVIRONMENT
value: production
livenessProbe:
httpGet:
path: /health
port: 80
initialDelayDuration: 30s
periodSeconds: 10
readinessProbe:
httpGet:
path: /ready
port: 80
initialDelayDuration: 5s
periodSeconds: 5
A/B Testing Framework
// ab-testing-framework.js
class ABTestingFramework {
constructor(config) {
this.experiments = config.experiments;
this.userSegments = config.userSegments;
}
getExperimentVariant(experimentId, userId) {
const experiment = this.experiments[experimentId];
if (!experiment || !experiment.active) {
return 'control';
}
// Check if user is in target segment
if (!this.isUserInSegment(userId, experiment.targetSegment)) {
return 'control';
}
// Consistent assignment based on user ID
const hash = this.hashString(userId + experimentId);
const bucket = hash % 100;
let cumulativeWeight = 0;
for (const variant of experiment.variants) {
cumulativeWeight += variant.weight;
if (bucket < cumulativeWeight) {
return variant.name;
}
}
return 'control';
}
trackExperimentView(experimentId, variant, userId) {
// Track experiment exposure
this.analytics.track('Experiment View', {
experiment_id: experimentId,
variant: variant,
user_id: userId,
timestamp: new Date().toISOString()
});
}
trackConversion(experimentId, variant, userId, conversionType) {
// Track conversion events
this.analytics.track('Experiment Conversion', {
experiment_id: experimentId,
variant: variant,
user_id: userId,
conversion_type: conversionType,
timestamp: new Date().toISOString()
});
}
isUserInSegment(userId, segmentId) {
const segment = this.userSegments[segmentId];
if (!segment) return true;
// Implement segment logic
return segment.filter(userId);
}
hashString(str) {
let hash = 0;
for (let i = 0; i < str.length; i++) {
const char = str.charCodeAt(i);
hash = ((hash << 5) - hash) + char;
hash = hash & hash; // Convert to 32-bit integer
}
return Math.abs(hash);
}
}
// Configuration example
const abTestConfig = {
experiments: {
'new-search-ui': {
active: true,
targetSegment: 'all',
variants: [
{ name: 'control', weight: 50 },
{ name: 'enhanced', weight: 50 }
]
},
'simplified-navigation': {
active: true,
targetSegment: 'new-users',
variants: [
{ name: 'control', weight: 70 },
{ name: 'simplified', weight: 30 }
]
}
},
userSegments: {
'all': { filter: () => true },
'new-users': {
filter: (userId) => {
// Check if user registered in last 30 days
return this.getUserRegistrationDate(userId) > Date.now() - 30 * 24 * 60 * 60 * 1000;
}
}
}
};
Integration Patterns
Headless CMS Integration
// headless-cms-integration.ts
interface CMSContent {
id: string;
title: string;
content: string;
metadata: Record<string, any>;
publishedAt: Date;
updatedAt: Date;
}
class HeadlessCMSIntegration {
private cmsClient: any;
private cache: Map<string, CMSContent>;
constructor(cmsConfig: any) {
this.cmsClient = new CMSClient(cmsConfig);
this.cache = new Map();
}
async syncContent(): Promise<void> {
try {
const content = await this.cmsClient.getContent({
content_type: 'documentation',
limit: 1000
});
for (const item of content.items) {
const docContent = this.transformContent(item);
await this.updateLocalContent(docContent);
}
console.log(`Synced ${content.items.length} items from CMS`);
} catch (error) {
console.error('CMS sync failed:', error);
throw error;
}
}
async getContent(id: string): Promise<CMSContent | null> {
// Check cache first
if (this.cache.has(id)) {
return this.cache.get(id)!;
}
try {
const item = await this.cmsClient.getEntry(id);
const content = this.transformContent(item);
this.cache.set(id, content);
return content;
} catch (error) {
console.error(`Failed to get content ${id}:`, error);
return null;
}
}
private transformContent(cmsItem: any): CMSContent {
return {
id: cmsItem.sys.id,
title: cmsItem.fields.title,
content: this.renderRichText(cmsItem.fields.content),
metadata: {
tags: cmsItem.fields.tags || [],
category: cmsItem.fields.category,
author: cmsItem.fields.author?.fields?.name,
difficulty: cmsItem.fields.difficulty
},
publishedAt: new Date(cmsItem.sys.createdAt),
updatedAt: new Date(cmsItem.sys.updatedAt)
};
}
private renderRichText(richText: any): string {
// Convert CMS rich text to markdown
return this.richTextRenderer.render(richText);
}
private async updateLocalContent(content: CMSContent): Promise<void> {
const filePath = `docs/${content.metadata.category}/${content.id}.md`;
const frontMatter = {
title: content.title,
description: content.metadata.description,
tags: content.metadata.tags,
category: content.metadata.category,
author: content.metadata.author,
last_updated: content.updatedAt.toISOString().split('T')[0]
};
const fileContent = `---
${yaml.dump(frontMatter)}---
${content.content}`;
await fs.writeFile(filePath, fileContent);
}
}
Advanced Customization Techniques
Custom DocFX Plugins
// CustomDocFXPlugin.cs
using Microsoft.DocAsCode.Plugins;
using System.Collections.Generic;
using System.IO;
[Export(typeof(IDocumentProcessor))]
public class CustomDocumentProcessor : DisposableDocumentProcessor
{
public override string Name => "CustomProcessor";
public override ProcessingPriority GetProcessingPriority(DocumentType documentType)
{
if (documentType == DocumentType.Article)
return ProcessingPriority.Normal;
return ProcessingPriority.NotSupported;
}
public override FileModel Load(FileAndType file, ImmutableDictionary<string, object> metadata)
{
var content = File.ReadAllText(file.File);
// Custom processing logic
content = ProcessCustomDirectives(content);
content = InjectDynamicContent(content, metadata);
return new FileModel(file, content)
{
DocumentType = DocumentType.Article
};
}
private string ProcessCustomDirectives(string content)
{
// Process custom directives like [!API-REFERENCE]
content = content.Replace(
"[!API-REFERENCE]",
GenerateApiReference()
);
// Process dynamic code samples
content = ProcessCodeSamples(content);
return content;
}
private string InjectDynamicContent(string content, ImmutableDictionary<string, object> metadata)
{
// Inject build-time information
var buildInfo = new
{
BuildDate = DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss"),
Version = GetVersion(),
Environment = GetEnvironment()
};
foreach (var prop in buildInfo.GetType().GetProperties())
{
var placeholder = $"{{{{ build.{prop.Name.ToLower()} }}}}";
content = content.Replace(placeholder, prop.GetValue(buildInfo)?.ToString());
}
return content;
}
private string GenerateApiReference()
{
// Generate API reference from OpenAPI spec
var apiGenerator = new ApiReferenceGenerator();
return apiGenerator.Generate();
}
private string ProcessCodeSamples(string content)
{
// Extract and validate code samples
var codeBlocks = ExtractCodeBlocks(content);
foreach (var block in codeBlocks)
{
if (block.Language == "csharp")
{
var validatedCode = ValidateCSharpCode(block.Code);
content = content.Replace(block.OriginalText, validatedCode);
}
}
return content;
}
}
// Plugin configuration
public class CustomDocFXPlugin : IDocfxPlugin
{
public string Name => "CustomDocFXPlugin";
public void Configure(IServiceCollection services)
{
services.AddSingleton<IDocumentProcessor, CustomDocumentProcessor>();
services.AddSingleton<ITemplateRenderer, CustomTemplateRenderer>();
}
}
Best Practices for Advanced Implementations
Performance Optimization
- Lazy Loading: Implement progressive content loading
- CDN Integration: Use global content delivery networks
- Search Optimization: Implement intelligent search ranking
- Caching Strategies: Multi-layer caching implementation
Scalability Patterns
- Microservices Documentation: Distributed documentation architecture
- Federation: Aggregate documentation from multiple sources
- Event-Driven Updates: Real-time content synchronization
- Load Balancing: Distribute documentation serving load
Security Considerations
- Access Control: Fine-grained permission systems
- Content Validation: Automated security scanning
- Audit Trails: Comprehensive change tracking
- Encryption: End-to-end content protection
Integration Strategy
- API-First: Design with integration in mind
- Event Streaming: Real-time update propagation
- Webhook Systems: External system notifications
- Data Synchronization: Multi-directional content sync
This advanced documentation section provides sophisticated techniques for organizations ready to implement cutting-edge Documentation as Code solutions.